Fool's solitaire on joins and Cartesian products of graphs

نویسندگان

  • Sarah Loeb
  • Jennifer Wise
چکیده

Peg solitaire is a game generalized to connected graphs by Beeler and Hoilman. In the game pegs are placed on all but one vertex. If xyz form a 3-vertex path and x and y each have a peg but z does not, then we can remove the pegs at x and y and place a peg at z. By analogy with the moves in the original game, this is called a jump. The goal of the peg solitaire game on graphs is to find jumps that reduce the number of pegs on the graph to 1. Beeler and Rodriguez proposed a variant where we instead want to maximize the number of pegs remaining when no more jumps can be made. Maximizing over all initial locations of a single hole, the maximum number of pegs left on a graph G when no jumps remain is the fool’s solitaire number F (G). We determine the fool’s solitaire number for the join of any graphs G and H . For the cartesian product, we determine F (G◻Kk) when k ≥ 3 and G is connected and show why our argument fails when k = 2. Finally, we give conditions on graphs G and H that imply F (G◻H) ≥ F (G)F (H).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

On global (strong) defensive alliances in some product graphs

A defensive alliance in a graph is a set $S$ of vertices with the property that every vertex in $S$ has at most one moreneighbor outside of $S$ than it has inside of $S$. A defensive alliance $S$ is called global if it forms a dominating set. The global defensive alliance number of a graph $G$ is the minimum cardinality of a global defensive alliance in $G$. In this article we study the global ...

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

NUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS

In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...

متن کامل

Some results on incidence coloring, star arboricity and domination number

Two inequalities are established connecting the graph invariants of incidence chromatic number, star arboricity and domination number. Using these, upper and lower bounds are deduced for the incidence chromatic number of a graph and further reductions are made to the upper bound for a planar graph. It is shown that cubic graphs with orders not divisible by four are not 4-incidence colorable. Sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 338  شماره 

صفحات  -

تاریخ انتشار 2015